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Proton emission imaging cameras, in combination with proton spectrometers and a proton temporal
diagnostic, provide a great deal of information about the spatial structure and time evolution of
inertial-confinement fusion capsule implosions. When used with D3He-filled capsules, multiple
proton emission imaging cameras measure the spatial distribution of fusion burn, with
three-dimensional information about burn symmetry. Simultaneously, multiple spectrometers
measure areal density as a function of angle around the imploded capsule. Experiments at the
OMEGA laser facility[T. R. Boehlyet al., Opt. Commun.133, 495(1997)] have already proven the
utility of this approach. An introduction to the hardware used for penumbral imaging, and
algorithms used to create images of the burn region, are provided here along with simple scaling
laws relating image resolution and signal-to-noise ratio to characteristics of the cameras and the
burn region. ©2004 American Institute of Physics.[DOI: 10.1063/1.1788892]

I. INTRODUCTION

Understanding and controlling implosion dynamics are
critical for progress in inertial-confinement-fusion(ICF),
where achieving spherical symmetry in the assembled fuel
mass is a prerequisite for optimal burn and ignition.1–3 It is
therefore important to have direct experimental observations
of what implosion asymmetries look like, how they evolve,
and how they are correlated with sources of asymmetry such
as illumination nonuniformity. Traditional methods of study-
ing asymmetry include x-ray imaging,4 neutron-emission im-
aging of deuterium-tritium(DT) burn,5–26 and measurement
of primary or secondary D3He proton spectra for determining
the areal densitysrRd of capsules at different angles.27–31We
report here an integrated approach to studying dynamics,
symmetry, and nuclear burn characteristics in implosions of
capsules containing D3He fuel, utilizing three independent
but directly related types of diagnostic measurements of the
14.7-MeV protons generated by D3He burn. Multiple proton-
emission imaging cameras, viewing an implosion from three
orthogonal directions, are now used in conjunction with a
proton temporal diagnostic,32,33 which measures the D3He
proton flux as a function of time, and multiple wedge-range-

filter spectrometers,34 which measure high-resolution spectra
of the protons at different angles around the capsule. Taken
together, they provide three-dimensional information about
the spatial distribution of D3He burn, the time evolution of
the burn, and the angular distribution of colder material sur-
rounding the burn region.

The proton-emission imaging cameras are described
briefly in Sec. II (with more details elsewhere35). They are
based on the penumbral imaging technique, which is related
to pinhole imaging20,23–25but involves an imaging aperture
much larger than the source; this results in a raw recorded
image that must be deconvolved, because structural informa-
tion about the source is encoded in the image penumbra. The
idea of using penumbral imaging to study ICF burn is at least
20 years old,5 and at least three different algorithms have
been used for deconvolution.

The first algorithm involves deconvolution in frequency
space, determining the two-dimensional Fourier transform
(FT) of the source surface brightness by multiplying the FT
of the penumbral image by a deconvolution filter that is the
inverse of the FT of the aperture point spread
function.5–8,10–13,15–18This approach is complicated some-
what by the fact that the FT of the aperture has zeros at a
number of frequencies, leading to singularities in the decon-
volution filter. The discrete frequencies used in digital pro-
cessing generally avoid the singularities, but they come close
enough to result in large amplification factors for the statis-
tical noise present in all real data. In practice, noise is con-
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trolled by usng a Wiener filter approach to modify the ideal
deconvolution filter in such a way as to reduce noise ampli-
fication near the singularities while minimizing distortion to
real structural information in the data. This direct reconstruc-
tion approach has been used for DT neutrons11–19 and for
3-MeV DD protons.36,37 Another direct reconstruction algo-
rithm that works in frequency space21 has been applied to DT
neutrons.22 It uses a different approximation to the ideal
frequency-space deconvolution filter, obtained by multiply-
ing the aperture FT itself by another nonsingular function of
frequency. This algorithm is exact only in the limit where the
radius of the sourcers is much smaller than the radius of the
imaging apertureRa, but errors are small for practical ratios
rs/Ra. The implementation is computationally simple and ef-
ficient, and no special precautions have to be made for noise
reduction other than some kind of low-pass filtering. The
third algorithm is iterative rather than direct, and involves
computations only in physical space. It utilizes a “maximum
entropy” technique to find an estimate for the source surface
brightness that has the least possible structure consistent with
the structure and the statistical errors of the penumbral
image.9 An initial guess for the source is used to stimulate
penumbral image data, and the difference between the real
and simulated penumbral images is used to find a more ac-
curate source estimate; the process is repeated until conver-
gence. This approach has been used in imaging with DD
protons and DTa particles.38–41

Section III describes a different direct, noniterative al-
gorithum involving computation in the spatial domain only.
It is computationally efficient, has no issues with filter sin-
gularities, and has a well-defined point-response function
that allows calculation of simple and explicit scaling laws
relating camera parameters and source type to the spatial
resolution and signal-to-noise ratio of reconstructed source
functions. In addition, the data processing in the spatial do-
main provides opportunities to see visual connections be-
tween data structure and source structure. The method is ap-
proximate, with errors scaling assrs/Rad2, but the errors are
extremely small for parameters relevant to our applications.
A related algorithm, described in Sec. IV, is often used to
calculate the radial distribution of reactions per unit volume
in the burning source when it can be assumed to have spheri-
cal symmetry.

Experiments with D3He-filled capsules are frequently
performed at the University of Rochester OMEGA laser
facility,42 where the techniques described here have been
used. D3He protons are sufficiently energetic to pass through
200 mg/cm2 of 1-keV plasma(or 1000 mg/cm2 of a 10
-keV plasma), so they are very useful for studying the im-
plosion performance of capsules with thick CH shells that do
not allow lower-energy charged particles to escape. These
experiments and their significance are described briefly in
Sec. V.

II. PROTON EMISSION IMAGING CAMERAS

There are three cameras that can be mounted on the
OMEGA target chamber, as shown in Fig. 1(a). Each camera
consists of a housing with an aperture at one end and slots

that accept detector packs, as shown in Fig. 1(b). Figure 2(a)
shows the approximate dimensions of the cameras. The typi-
cal source at OMEGA has a radius ofrs,30 mm. The round
imaging aperture, at a distanceL<3 cm from the source,
generally has a radiusRa=1000mm and is cut very accu-
rately in a 500-mm-thick plate of Ta(which will stop protons
with energies&17.5 MeV). The image recorder consists of
stacked sheets of CR-39 nuclear track detector separated by
ranging filters that result in efficient detection of 14.7-MeV
D3He protons on one sheet and 3-MeV DD protons on an-
other(only D3He protons will be considered here; other par-
ticles will be discussed elsewhere).35 The parameterM char-
acterizes the magnification of the system.

The CR-39 detectors43,44 are sheets of a clear plastic in
which protons leave trails of damage sites. After etching in
NaOH, the entry point of each proton becomes a conical hole
that can be identified and quantified in a digitized micro-
scope image. Detection is essentially 100% efficient, as long
as the detector has filtering that slows incoming protons
down to the range of sensitivity of about 0.5 to 8 MeV, and

FIG. 1. (Color) Diagrams illustrating the structure of the proton emission
imaging cameras.(a) A cutaway view of the OMEGA target chamber, show-
ing three cameras pointed toward the target(located at the chamber center)
from nearly orthogonal directions. The structure at 11:00 holds the target
capsule in place on its stalk. The diameter of the target chamber is 330 cm.
(b) The housing of an individual camera. The aperture is at the left end, and
the detector pack(shown in dark gray), is inserted into a slot in the top.

FIG. 2. (Color online) (a) Diagram showing the parameters of a penumbral
imaging camera.(b) A sample penumbral image. Brightness is proportional
to the number of protons per unit area on the detector.
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the position of each track is recorded to a fraction of a mi-
cron. The recorded penumbral image data comprise the pre-
cise locations of all proton tracks, which may be binned as
desired for any processing scheme. There are therefore es-
sentially no resolution limits imposed by the detector itself.

Resolution degradation from effects such as proton scat-
tering in the target capsule or off the aperture, proton trajec-
tory distortion by electric fields, and geometric distortion due
to imperfections in the aperture are all negligible35 compared
to the deliberate degradation of resolution that will have to
be imposed on the data through filtering to control statistical
noise. For all practical purposes, the aperture can be consid-
ered to have a perfect edge in a thin, opaque plate. This
allows us to avoid some of the problems that occur in neu-
tron imaging,13 where even a very thick plate does not stop
all neutrons and the aperture “edge” is not as well defined.

A sample proton penumbral image is shown in Fig. 2(b).
The number of incident protons per unit areaN can be rep-
resented as a function ofx and y on the detector, or as a
function of radius and angle with respect to any position on
the detector. The yield of the source can be calculated di-
rectly from the value ofN in the center of the image(with
any background level subtracted): Ys=4psM +1d2L2Ns0,0d.
Information about the source structure must be extracted
from the penumbra.

III. SURFACE BRIGHTNESS RECONSTRUCTION

A. Algorithm

Figure 3 shows the relationship between a three-
dimensional source functionSsx,y,zd; its two-dimensional
projection along thez axis, which is the surface brightness
Bsx,yd seen by an observer at positivez; and a one-
dimensional projectionpss,fd representing straight-line in-
tegrals throughB at anglef and impact parameterss. The
function p is the Radon transform45 of B, and computation-
ally efficient methods for recoveringB from p were devel-
oped several decades ago for x-ray computed tomography
(CT).46,47 Although pss,fd cannot be found exactly from a
penumbral image,pss,fd=4psM +1d2L2]Nsr0−Ms,fd /]s
in the limit where the halfwidth of the penumbraMrs is
much smaller than the radiusr0=sM +1dRa of the aperture as
projected on the detector(see Fig. 4). In this limit, standard
CT algorithms can be used to reconstructB from N. When

rsmax; r0/M is not large compared tors,]N/]r is approxi-
mately proportional to integrals through the source along cir-
cular paths with radiirsmax. A standard algorithm for CT
reconstruction, called convolve-and-backproject or filtered
backprojection, can be modified to correct for most of the
effects of the curvature as long asrs, rsmax. The modified
version can be written

Bsx,yd <
1

2p
E
0

2p

wP8fR0 − Msx cosf + y sinfd,fgdf

− 0.13Ys/prsmax
2 , s1d

where

R0 ; Îr0
2 − M2sx sinf − y cosfd2, s2d

w ; 1 − Msx cosf + y sinfd/R0, s3d

Psr,fd ; − f4pMsM + 1d2L2gCsrd
]

]r
Nsr,fd, s4d

P8sr,fd ; Fconvsrd*Psr,fd, s5d

Fconvsrd ; Fsmoothsr/Md*hCTsr/Md. s6d

Csrd is a weighting factor described below.P8 is found by
convolvingPsr ,fd with a filter Fconv, which is a standard CT
convolution kernalhCT (we use the version of Ref. 46) con-
volved with a smoothing filterFsmooth discussed below. The
integration in Eq.(1) is referred to as backprojection, be-
cause it relates structure in the convolved projection back to
specific locations in the reconstruction plane.

In the limit rs/ rsmax!1, Eq. (1) becomes the standard
CT reconstruction algorithm described in Refs. 46 and 47:
w=C=1, R0 is a constant, and the term proportional torsmax

−2

goes to zero. Of the four modifications incorporated here to
approximately correct for finiters/ rsmax, the most important
is the angular dependence of Eq.(2). This exact correction
was derived to guarantee that structure in the projections is

FIG. 3. (Color online) Diagram illustrating the relationship between a three-
dimensional sourceS, the two-dimensional projectionB that is its surface
brightness, and one-dimensional projectionsp of B.

FIG. 4. (Color online) Diagram illustrating the radial profile ofN, the num-
ber of proton tracks per unit area on the detector, and its radial derivative.
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“backprojected” along the correct curved paths through the
reconstructed image plane rather than along straight lines.
The weighting factorw gives different weights to contribu-
tions of different projection angles at each position in the
source-image plane, to reduce a small distortion in the point-
response function at points far fromx=y=0. The weighting
function Csrd compensates approximately for the small dif-
ference between the shapes of projections based on straight-
line integrals and curved-line integrals. An expression that
works well for symmetric sources is

Csrd = s1 − 0.22,d fsp/3dÎ1 − ,2/cos−1sr/2r0dg1.4, s7d

where,; r / r0−1; it also produces improved reconstructions
for asymmetric sources. Finally, the term proportional to
rsmax

−2 corrects for a very small dc offset in the reconstructed
image; it is a function of yield only(calculated in advance as
described in Sec. II), is independent of position, and amounts
to ,3% for rs/ rsmax=0.5. Other modifications are possible,
but accuracy is currently more than satisfactory.

B. Implementation and accuracy

Numerical execution of Eqs.(1)–(6) is straightforward
and efficient, following steps illustrated with an example in
Fig. 5. The positions of individual proton tracks in the
penumbral-image proton data are used to determineNsr ,fd,
which we typically bin in a grid with 1° angular bins and
M mm radial bins[see Fig. 5(b)]. The gradient in the radial
direction is calculated and multiplied byCsrd to produce
Psr ,fd, as shown in Fig. 5(c), and then convolved in the
radial direction withFconvsrd to produceP8sr ,fd, as shown
in Fig. 5(d). Finally, Bsx,yd is calculated on a grid of 1
-mm pixels using Eq.(1) [see Fig. 5(e)]. Coarser grids would
give faster computation, but keeping the bin sizes small rela-
tive to the effective resolution of the final reconstruction(see
Sec. III C below) assures that structure is not undersampled
and also allows the result to look more like a continuous
function.

Binning data inr andf requires reference to an origin in
the detector plane. This does not have to be the exact center
of the penumbral image; shifting the origin simply results in
a reconstructed image with a shifted origin. What does need
to be known accurately is the radiusr0. Although it is usually
known fairly accurately from design parameters, it can be
found directly from the data using the fact that the average
over f of Psr ,fd is symmetric aboutr0.

Equation (1) produces reconstructions that are not ex-
actly correct except in the limitrs/ rsmax!1, but are ex-
tremely accurate for the valuesrs/ rsmax,0.1 that are rel-
evant here(amplitude errors less than 0.5%, and perfect
positional accuracy). Even for rs/ rsmax=0.5, simulations
show that the positional accuracy is perfect(see Fig. 5) and
the amplitude errors are a few percent(see Fig. 6).

The steps involved in performing image reconstruction
provide opportunities to see visual connections between data
structure and source structure in a satisfying way that is not
always possible with frequency-space calculations. The val-
uesPsr ,fd in Fig. 5(c) are approximately the line integrals
pss,fd of Fig. 3, wheres<sr −r0d /M, and an experienced
eye can see how the line integrals are related to the source. In

this case, the fact thatp is wider atf=0 than atf=p /2 in
Figs. 5(c) and 5(d) means thatB has a larger extent in thex
direction than in they direction. The four narrow bright fea-
tures atf=0, and the way each one has a width that varies
sinusoidally withf, tell us there are four short vertical lines
in B. Similarly, the existence and position inB of a short
horizontal line segment and two diagonal segments can be

FIG. 5. Simulated penumbral image(a), reconstruction of source surface
brightness(e) and(f), and intermediate data-processing steps(b)–(d). Nsx,yd
was generated by a Monte Carlo program for an assumedBsx,yd containing
geometrically precise, short-wavelength information and having a maximum
radius of 0.5rsmax. The reconstruction(e) is virtually perfect, showing dis-
tortion only due to statistical noise and the smoothing that results from a
point-response-function with a two-pixel radius. The text describes how the
basic structure in(e) can be guessed from the information in(c) or (d). In
(f), Bsx,yd is displayed with a look-up-table that emphasizes low-amplitude
noise structure.

FIG. 6. (Color online) Values along the diameters of reconstructed uniform
disks with rs=0.5rsmax and rs=0.2rsmax, compared with the original source
functions. The reconstructions were calculated from analytically simulated
penumbral data with no noise. Reconstruction errors scale withsrs/ rsmaxd2,
and are completely negligible in the context of data taken on OMEGA
(wherers is typically smaller than 0.05rsmax).
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ascertained from the locations of their projections in Figs.
5(c) and 5(d).

C. Point-response function, spatial resolution, and
noise

The spatial resolution of surface-brightness reconstruc-
tions is limited by the smoothing used to reduce noise from
counting statistics. We useFsmoothsrd=p−1/2rprf

−1 e−sr / rprfd
2

in
Eq. (6), resulting in a point response function for the recon-

structedBsx,yd with the form e−sx2+y2d/rprf
2

; the radiusrprf is
specified by the user in order to achieve a desired noise re-
duction. This results in a well characterized and well be-
haved point-response function as well as noise of predictable
character. The resolution can be characterized byrprf or by
the full width at half maximum, which is 1.66rprf.

The signal-to-noise ratio of a reconstructed surface
brightness image can now be studied. The “signal” is just the
true surface brightness with a small modification for effects
of smoothing. For Gaussian surface brightness distributions,
which are often observed(see Sec. IV), the peak value is

Signal =
Ys

psrs
2 + rprf

2 d
mm−2, s8d

wherers is the radius at which the brightness ise−1 times the
peak value. The point-response function broadens the bright-
ness distribution without changing the total yield, resulting in
reduced central image brightness. Equation(8) is approxi-
mately correct for a uniform-brightness disk of outer radius
rs, although the effect ofrprf is then not exact. The rms noise
amplitude in the image can be shown48 to be

Noise< F0.4SM + 1

M
D1/2 L

Ra
1/2Grprf

−5/2Ys
1/2mm−2. s9d

[Equation (9) assumes all detector events are from signal
protons. If there is a uniform background ofNbackgroundspu-
rious tracks per unit area on the detector, thenYs is replaced
by Ys+8psM +1d2L2Nbackground.] The ratio of Eqs.(8) and(9)
gives the signal-to-noise ratio(SNR)

SNR< F0.8S M

M + 1
D1/2Ra

1/2

L
G rprf

5/2

srs
2 + rprf

2 d
Ys

1/2. s10d

The noise has several important features. First, its am-
plitude depends only on source yield; it is independent of
source size and shape. Second, noise in the reconstructed
image is not “white;” its amplitude goes as the square of
frequency.48 Third, this frequency dependence tends to make
the noise look “lumpy,” being completely dominated by the
highest frequencies allowed by the smoothing. Fourth, the
noise is roughly homogeneous and isotropic, at least out as
far as this reconstruction algorithm is useful(say r
&0.7rsmax). Several of these features can be seen in Fig. 5(f).

Equation (10) can be used to determine what kind of
resolution is obtainable, if we assume that we want a SNR of
20 to get decent image clarity. Setting SNR=20 and solving
for rprf, we find different behavior depending on whether we
are asking for resolution in the sense of the width of a re-
constructed delta-function source

rprf < F25SM + 1

M
D1/2 L

Ra
1/2G2

Ys
−1, rs ! rprf , s11d

or the more realistic resolution for structure on a scale
smaller than the overall source size

rprf < rs
4/5F25SM + 1

M
D1/2 L

Ra
1/2G2/5

Ys
−1/5, rs @ rprf . s12d

D. Predicted real-world performance at
OMEGA

Numbers relevant to experiments at OMEGA, calculated
from the dimensions in Fig. 2(a), are

SNR< 20S rprf

10 mm
D5/2s30 mmd2

srs
2 + rprf

2 d
S Ys

1010D1/2

s13d

and (for rprf smaller thanrs)

rprf < 10S Ys

1010D−1/5S rs

30 mm
D4/5

mm. s14d

Typical OMEGA implosions of D3He-filled capsules with
thick CH shells havers,30 mm andYs,109, leading us to
a predicted resolution ofrprf <16 mm.

IV. RADIAL BURN PROFILE RECONSTRUCTION

When implosions are nearly spherical, there are advan-
tages to pursuing a different approach: the structure of the
penumbra, averaged overf, can be used to estimate the ra-
dial profile of the burn in D3He reactions per unit volume.
This requires going from the approximate straight-line-
integral projectionPsrd to Bsrd via Abel inversion, and then
going fromBsrd to Ssrd via another Abel inversion. To obtain
as much information as possible about the basic size and
shape ofSsrd while minimizing the effects of noise, we apply
this approach by using a family of simple radial functions for
Ssrd that have analytic counterparts for straight-line-integral
projections. This is the family of powersa of a parabola.
Defining a “peakedness” parameterb;a / sa+1d, it can be
shown that if

Ssrd =
pA

s1 − bdr1
2F1 −S r

r1
D2Gb/s1−bd

, s15d

then the equivalent straight-line projection is

Psrd = AF1 −S r0 − r

Mr1
D2G1/s1−bd

. s16d

As illustrated in Fig. 7,b=0 corresponds to a flat source.
Increasingb makes the source more peaked; in the limitb
=1, expressions(15) and (16) both become Gaussians. De-
creasingb below 0 makes the source increasingly hollow. In
practice, a least-squares fit is used to find the parameters
r0,A,r1, and b in Eq. (16) [the origin used for binning
Nsr ,fd is determined by minimizing the best-fit value ofr1];
Ssrd is then determined directly from Eq.(15). There are two
advantages to this approach. First, the results are local total
emission values and not projections. Second, the least-
squares fit can be performed without doing very much
smoothing ofdN/dr; the result is a more accurate measure-
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ment of the source size than can be obtained through two-
dimensional(2D) reconstruction. Most data analyzed thus far
for D3He-filled capsules have been compatible with radial
profiles of Gaussian shape.

V. DISCUSSION

The instrumentation and algorithms described above
have been successfully applied to a wide range of experi-
ments at OMEGA. The method of Sec. IV has been used to
find clear trends in the variation of burn-region size with
capsule type(fill pressure, shell material and thickness) and
laser conditions(energy and smoothing).35 These results are
particularly important for studying mix and for benchmark-
ing the numerical simulations. The 2D reconstruction tech-
niques have recently been used to study the relationship be-
tween laser drive asymmetry and burn asymmetry. Those
measurements are being combined with measurements of ar-
eal density asymmetry, burn time evolution, and x-ray emis-
sion asymmetry; specific results of these experiments, com-
parisons with simulations, and physics analysis, will be
described elsewhere.
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